Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.251
Filtrar
1.
Sci Rep ; 14(1): 9117, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643232

RESUMO

Milk protein content is an important index to evaluate the quality and nutrition of milk. Accumulating evidence suggests that microRNAs (miRNAs) play important roles in bovine lactation, but little is known regarding the cross-kingdom regulatory roles of plant-derived exogenous miRNAs (xeno-miRNAs) in milk protein synthesis, particularly the underlying molecular mechanisms. The purpose of this study was to explore the regulatory mechanism of alfalfa-derived xeno-miRNAs on proliferation and milk protein synthesis in bovine mammary epithelial cells (BMECs). Our previous study showed that alfalfa miR159a (mtr-miR159a, xeno-miR159a) was highly expressed in alfalfa, and the abundance of mtr-miR159a was significantly lower in serum and whey from high-protein-milk dairy cows compared with low-protein-milk dairy cows. In this study, mRNA expression was detected by real-time quantitative PCR (qRT-PCR), and casein content was evaluated by enzyme-linked immunosorbent assay (ELISA). Cell proliferation and apoptosis were detected using the cell counting kit 8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, western blot, and flow cytometry. A dual-luciferase reporter assay was used to determine the regulation of Protein Tyrosine Phosphatase Receptor Type F (PTPRF) by xeno-miR159a. We found that xeno-miR159a overexpression inhibited proliferation of BMEC and promoted cell apoptosis. Besides, xeno-miR159a overexpression decreased ß-casein abundance, and increased α-casein and κ-casein abundance in BMECs. Dual-luciferase reporter assay result confirmed that PTPRF is a target gene of xeno-miR159a. These results provide new insights into the mechanism by which alfalfa-derived miRNAs regulate BMECs proliferation and milk protein synthesis.


Assuntos
MicroRNAs , Proteínas do Leite , Feminino , Bovinos , Animais , Proteínas do Leite/metabolismo , Medicago sativa/genética , Medicago sativa/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Glândulas Mamárias Animais/metabolismo , Caseínas/genética , Caseínas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Luciferases/metabolismo , Células Epiteliais/metabolismo
2.
Anim Biotechnol ; 35(1): 2334725, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38623994

RESUMO

The lactation character of dairy goats is the most important characteristic, and milk protein is an important index to evaluate milk quality. Casein accounts for more than 80% of the total milk protein in goat milk and is the main component of milk protein. Using GMECs (goat mammary epithelial cells) as the research object, the CHECK2 vector of the CSN1S1 gene and the overexpression vector of pcDNA 3.1 were constructed, and the mimics of miR-2284b and the interfering RNA of CSN1S1 were synthesized. Using PCR, RT-qPCR, a dual luciferase activity detection system, EdU, CCK8, cell apoptosis detection and ELISA detection, we explored the regulatory mechanism and molecular mechanism of miR-2284b regulation of αs1-casein synthesis in GMECs. miR-2284b negatively regulates proliferation and apoptosis of GMECs and αs1-casein synthesis. Two new gene sequences of CSN1S1 were discovered. CSN1S1-1/-2 promoted the proliferation of GMECs and inhibited cell apoptosis. However, it had no effect on αs1-casein synthesis. MiR-2284b negatively regulates αs1-casein synthesis in GMECs by inhibiting the CSN1S1 gene. These results all indicated that miR-2284b could regulate αs1-casein synthesis, thus playing a theoretical guiding role in the future breeding process of dairy goats and accelerating the development of dairy goat breeding.


Assuntos
Caseínas , MicroRNAs , Feminino , Animais , Caseínas/genética , Caseínas/metabolismo , Proteínas do Leite , Cabras/fisiologia , Células Epiteliais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Glândulas Mamárias Animais/metabolismo
3.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612844

RESUMO

In addition to its association with milk protein synthesis via the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, JAK2 also affects milk fat synthesis. However, to date, there have been no reports on the effect of JAK2 on ovine mammary epithelial cells (OMECs), which directly determine milk yield and milk contents. In this study, the coding sequence (CDS) region of ovine JAK2 was cloned and identified and its tissue expression and localization in ovine mammary glands, as well as its effects on the viability, proliferation, and milk fat and casein levels of OMECs, were also investigated. The CDS region of ovine JAK2, 3399 bp in length, was cloned and its authenticity was validated by analyzing its sequence similarity with JAK2 sequences from other animal species using a phylogenetic tree. JAK2 was found to be expressed in six ovine tissues, with the highest expression being in the mammary gland. Over-expressed JAK2 and three groups of JAK2 interference sequences were successfully transfected into OMECs identified by immunofluorescence staining. When compared with the negative control (NC) group, the viability of OMECs was increased by 90.1% in the pcDNA3.1-JAK2 group. The over-expression of JAK2 also increased the number and ratio of EdU-labeled positive OMECs, as well as the expression levels of three cell proliferation marker genes. These findings show that JAK2 promotes the viability and proliferation of OMECs. Meanwhile, the triglyceride content in the over-expressed JAK2 group was 2.9-fold higher than the controls and the expression levels of four milk fat synthesis marker genes were also increased. These results indicate that JAK2 promotes milk fat synthesis. Over-expressed JAK2 significantly up-regulated the expression levels of casein alpha s2 (CSN1S2), casein beta (CSN2), and casein kappa (CSN3) but down-regulated casein alpha s1 (CSN1S1) expression. In contrast, small interfered JAK2 had the opposite effect to JAK2 over-expression on the viability, proliferation, and milk fat and milk protein synthesis of OMECs. In summary, these results demonstrate that JAK2 promotes the viability, proliferation, and milk fat synthesis of OMECs in addition to regulating casein expression in these cells. This study contributes to a better comprehension of the role of JAK2 in the lactation performance of sheep.


Assuntos
Caseínas , Leite , Feminino , Animais , Ovinos , Caseínas/genética , Filogenia , Proteínas do Leite , Células Epiteliais
4.
Biotechnol J ; 19(2): e2300287, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38047759

RESUMO

Gene loci of highly expressed genes provide ideal sites for transgene expression. Casein genes are highly expressed in mammals leading to the synthesis of substantial amounts of casein proteins in milk. The α-casein (CSN1S1) gene has assessed as a site of transgene expression in transgenic mice and a mammary gland cell line. A transgene encoding an antibody light chain gene (A1L) was inserted into the α-casein gene using sequential homologous and site-specific recombination. Expression of the inserted transgene is directed by the α-casein promoter, is responsive to lactogenic hormone activation, leads to the synthesis of a chimeric α-casein/A1L transgene mRNA, and secretion of the recombinant A1L protein into milk. Transgene expression is highly consistent in all transgenic lines, but lower than that of the α-casein gene (4%). Recombinant A1L protein accounted for 0.5% and 1.6% of total milk protein in heterozygous and homozygous transgenic mice, respectively. The absence of the α-casein protein in homozygous A1L transgenic mice leads to a reduction of total milk protein and delayed growth of the pups nursed by these mice. Overall, the data demonstrate that the insertion of a transgene into a highly expressed endogenous gene is insufficient to guarantee its abundant expression.


Assuntos
Caseínas , Lactação , Feminino , Camundongos , Animais , Caseínas/genética , Caseínas/metabolismo , Lactação/genética , Lactação/metabolismo , Camundongos Transgênicos , Proteínas do Leite/genética , Proteínas do Leite/metabolismo , Proteínas Recombinantes/metabolismo , Transgenes/genética , Glândulas Mamárias Animais/metabolismo , Mamíferos/genética
5.
J Dairy Sci ; 107(2): 956-977, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37709043

RESUMO

Reggiana is a local cattle breed from northern Italy known for its rusticity and profitability, due to the production of branded Parmigiano Reggiano cheese. To ensure the persistence of such profitability in the long term, an adequate breeding program is required. To this aim, in the present study we estimate the genetic parameters of the main productive and reproductive traits, and we evaluate the effect of genotype by environment interaction (GxE) on these traits using 2 environmental covariates: (1) productivity and (2) temperature-humidity index (THI). Milk, fat, protein, and casein yield were considered as daily production traits, whereas protein, fat, casein percentage, casein index, and somatic cell score were considered as milk quality traits. Finally, reproductive traits such as the number of inseminations, days open, calving interval, and calving-to-first-insemination interval were evaluated. Reggiana cattle produce an average of 19 kg of milk per day with 3.7% fat and 3.4% protein content and have excellent fertility parameters. Compared with other breeds, they have slightly lower heritability for production and quality for production traits (e.g., 0.12 [0.09; 0.15] for milk yield), but similar heritability for fertility traits. Milk, protein, and fat daily yields are highly correlated but negatively correlated with the percentage of protein, fat, and casein, whereas fertility traits have an unfavorable genetic correlation with daily production traits. When considering productivity, a consistent amount of variability due to GxE was observed for all daily production traits, somatic cell count, and casein index. A modest amount of GxE was observed for fertility parameters, while the percentage of solid content showed almost no GxE effect. A similar situation occurred when considering the THI, but no GxE interaction was observed for reproduction traits. In conclusion, this study provides useful information for the implementation of accurate selection plans in this local breed, accounting for environmental plasticity measured through the consistent GxE interaction observed.


Assuntos
Lactação , Leite , Feminino , Bovinos/genética , Animais , Leite/metabolismo , Lactação/genética , Caseínas/genética , Caseínas/metabolismo , Fertilidade/genética , Reprodução
6.
Anim Genet ; 55(2): 257-264, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38131417

RESUMO

Milk yield and composition phenotypes are systematically recorded across several lactations in goats, but the majority of genome-wide association studies (GWAS) performed so far have rather ignored the longitudinal nature of such data. Here, we have used two different GWAS approaches to analyse data from three lactations recorded in Murciano-Granadina goats. In Analysis 1, independent GWAS have been carried out for each trait and lactation, while a single longitudinal GWAS, jointly considering all data, has been performed in Analysis 2. In both analyses, genome-wide significant QTL for lactose percentage on chromosome 2 (129.77-131.01 Mb) and for milk protein percentage on the chromosome 6 (74.8-94.6 Mb) casein gene cluster region were detected. In Analysis 1, several QTL were not replicated in all three lactations, possibly due to the existence of lactation-specific genetic determinants. In Analysis 2, we identified several genome-wide significant QTL related to milk yield and protein content that were not uncovered in Analysis 1. The increased number of QTL identified in Analysis 2 suggests that the longitudinal GWAS is particularly well suited for the genetic analysis of dairy traits. Moreover, our data confirm that variability within or close to the casein complex is the main genetic determinant of milk protein percentage in Murciano-Granadina goats.


Assuntos
Caseínas , Estudo de Associação Genômica Ampla , Feminino , Animais , Estudo de Associação Genômica Ampla/veterinária , Caseínas/genética , Cabras/genética , Lactação/genética , Fenótipo , Proteínas do Leite/genética
7.
J Agric Food Chem ; 71(43): 16184-16193, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37853551

RESUMO

Leucine, a kind of branched-chain amino acid, plays a regulatory role in the milk production of mammalian mammary glands, but its regulatory functions and underlying molecular mechanisms remain unknown. This work showed that a leucine-enriched mixture (LEUem) supplementation increased the levels of milk protein and milk fat synthesis in primary bovine mammary epithelial cells (BMECs). RNA-seq of leucine-treated BMECs indicated alterations in lipid metabolism, translation, ribosomal structure and biogenesis, and inflammatory response signaling pathways. Meanwhile, the supplementation of leucine resulted in mTOR activation and increased the expression of BCKDHA, FASN, ACC, and SCD1. Interestingly, the expression of PPARα was independently correlated with the leucine-supplemented dose. PPARα activated by WY-14643 caused significant suppression of lipogenic genes expression. Furthermore, WY-14643 attenuated leucine-induced ß-casein synthesis and enhanced the level of BCKDHA expression. Moreover, promoter analysis revealed a peroxisome-proliferator-response element (PPRE) site in the bovine BCKDHA promoter, and WY-14643 promoted the recruitment of PPARα onto the BCKDHA promoter. Together, the present data indicate that leucine promotes the synthesis of ß-casein and fatty acid and that PPARα-involved leucine catabolism is the key target.


Assuntos
Caseínas , PPAR alfa , Bovinos , Animais , Caseínas/genética , Caseínas/metabolismo , Leucina/farmacologia , Leucina/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Glândulas Mamárias Animais/metabolismo , Ácidos Graxos/metabolismo , Células Epiteliais/metabolismo , Mamíferos/metabolismo
8.
Anim Biotechnol ; 34(8): 4116-4125, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37830164

RESUMO

The A2 milk marker is gaining popularity worldwide; thus, many farms plan to convert their dairy cattle herds to the A2A2 genotype. Variation in beta-casein genotypes needs to be monitored in large dairy cattle populations. Therefore we aimed to evaluate the genotypic distributions, population genetics, and diversity parameters in Holstein-Friesian cows. A total of 1200 cattle were genotyped using the Affymetrix® Axiom® array system. We performed an association analysis regarding the CSN2 genotypes and phenotypic traits, including lactation and test-day milk yield. We next evaluated the effects of the genotypes considering the genetic merit of the animals. Animals were grouped based on their PTAs for milk production, fat, protein, and daughter pregnancy rate. Thus, we tested the genotype × genetic merit interaction for significance. The A2 allele frequency is remarkably high (0.68), and the heterozygous genotype is predominant (46.25%). The marker showed intermediate variability and diversity levels, indicating a considerable frequency of the A1A1 genotype (9.33%) remains in the population. ANOVA results showed no significant association between the CSN2 genotypes and milk yield traits. A similar finding is valid for the genotype × genetic merit regarding the genomic test results. The data presented here may be helpful for further investigations and applications on A2 milk production.


Assuntos
Caseínas , Leite , Gravidez , Feminino , Bovinos/genética , Animais , Leite/metabolismo , Caseínas/genética , Caseínas/metabolismo , Genótipo , Lactação/genética , Genômica
9.
J Dairy Res ; 90(3): 287-291, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37622324

RESUMO

We studied the genetic polymorphism of beta-lactoglobulin (ß-Lg) whey protein in Gangatiri zebu cows for this Research Communication. The polymorphic nature of milk protein fractions and their association with milk production traits, composition and quality has attracted several efforts in evaluating the allelic distribution of protein locus as a potential dairy trait marker. Genetic variants of ß-Lg have highly significant effects on casein number (B > A) and protein recovery (B > A) and also determine the yield of cheese dry matter (B > A). Molecular techniques of polyacrylamide gel electrophoresis and high-resolution accurate mass-spectroscopy were applied to characterize the ß-Lg protein obtained from the Gangatiri breed milk. Sequence analysis of ß-Lg showed the presence of variant B having UniProt database accession number P02754, coded on the PAEP gene. Our study can provide reference and guidance for the selection of superior milk (having ß-LgB) from this indigenous breed that could potentially give a good yield of ß-Lg for industrial applications.


Assuntos
Lactoglobulinas , Leite , Feminino , Bovinos/genética , Animais , Lactoglobulinas/genética , Leite/química , Proteínas do Leite/análise , Caseínas/genética , Caseínas/análise , Genótipo , Espectrometria de Massas/veterinária
10.
FEMS Microbiol Ecol ; 99(9)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37496200

RESUMO

Social cheating is the exploitation of public goods that are costly metabolites, like exoproteases. Exoprotease exploitation in Pseudomonas aeruginosa has been studied in reference strains. Experimental evolution with reference strains during continuous growth in casein has demonstrated that nonexoprotease producers that are lasR mutants are selected while they behave as social cheaters. However, noncanonical quorum-sensing systems exist in P. aeruginosa strains, which are diverse. In this work, the exploitation of exoproteases in the environmental strain ID4365 was evaluated; ID4365 has a nonsense mutation that precludes expression of LasR. ID4365 produces exoproteases under the control of RhlR, and harbors an inducible prophage. As expected, rhlR mutants of ID4365 behave as social cheaters, and exoprotease-deficient individuals accumulate upon continuous growth in casein. Moreover, in all continuous cultures, population collapses occur. However, this also sometimes happens before cheaters dominate. Interestingly, during growth in casein, ID4565's native prophage is induced, suggesting that the metabolic costs imposed by social cheating may increase its induction, promoting population collapses. Accordingly, lysogenization of the PAO1 lasR mutant with this prophage accelerated its collapse. These findings highlight the influence of temperate phages in social cheating.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Humanos , Percepção de Quorum/genética , Pseudomonas aeruginosa/genética , Caseínas/genética , Caseínas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lisogenia , Prófagos/genética
11.
Anim Sci J ; 94(1): e13846, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37354025

RESUMO

We previously developed a genotyping method to detect the A1 and A2 alleles of the bovine ß-casein gene. This method required DNA extraction from hair samples. Recently, demand for A2 milk (milk from cows homozygous for the A2 allele) has increased, and dairy farms are required to have certification to produce A2 milk. Here, we describe the development of a new, simple, and sensitive genotyping method for the ß-casein gene that does not require DNA extraction. This method uses the CycleavePCR technique and can amplify the ß-casein gene directly from raw milk samples. Genotypes obtained from the milk samples (n = 27) were completely coincident with those obtained from genomic DNA. In addition, this method could quantify the A1 allele in the milk samples. The limit of detection for the A1 allele in A2 milk was 2%. The copy numbers of the A1 allele corresponding to the 2% detection limit were estimated to be 30.5 ± 24.3 molecules/µL. These findings indicate that this new genotyping method is simple and fast for detecting the A1 allele in milk samples and can therefore be potentially used to certify A2 milk.


Assuntos
Caseínas , Leite , Feminino , Animais , Bovinos/genética , Alelos , Caseínas/genética , Reação em Cadeia da Polimerase/veterinária , Fazendas
12.
J Dairy Sci ; 106(8): 5276-5287, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37291039

RESUMO

Of late, "A2 milk" has gained prominence in the dairy sector due to its potential implications in human health. Consequently, the frequency of A2 homozygous animals has considerably increased in many countries. To elucidate the potential implications that beta casein (ß-CN) A1 and A2 may have on cheese-making traits, it is fundamental to investigate the relationships between the genetic polymorphisms and cheese-making traits at the dairy plant level. Thus, the aim of the present study was to evaluate the relevance of the ß-CN A1/A2 polymorphism on detailed protein profile and cheese-making process in bulk milk. Based on the ß-CN genotype of individual cows, 5 milk pools diverging for presence of the 2 ß-CN variants were obtained: (1) 100% A1; (2) 75% A1 and 25% A2; (3) 50% A1 and 50% A2; (4) 25% A1 and 75% A2; and (5) 100% A2. For each cheese-making day (n = 6), 25 L of milk (divided into 5 pools, 5 L each) were processed, for a total of 30 cheese-making processes. Cheese yield, curd nutrient recovery, whey composition, and cheese composition were assessed. For every cheese-making process, detailed milk protein fractions were determined through reversed-phase HPLC. Data were analyzed by fitting a mixed model, which included the fixed effects of the 5 different pools, the protein and fat content as a covariate, and the random effect of the cheese-making sessions. Results showed that the percentage of κ-CN significantly decreased up to 2% when the proportion of ß-CN A2 in the pool was ≥25%. An increase in the relative content of ß-CN A2 (≥50% of total milk processed) was also associated with a significantly lower cheese yield both 1 and 48 h after cheese production, whereas no effects were observed after 7 d of ripening. Concordantly, recovery of nutrients reflected a more efficient process when the inclusion of ß-CN A2 was ≤75%. Finally, no differences in the final cheese composition obtained by the different ß-CN pools were observed.


Assuntos
Caseínas , Queijo , Feminino , Humanos , Animais , Bovinos/genética , Caseínas/genética , Caseínas/metabolismo , Proteínas do Leite/metabolismo , Leite/metabolismo , Polimorfismo Genético
13.
J Dairy Sci ; 106(5): 3359-3375, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37028963

RESUMO

In this study, we explored mating allocation in Holstein using genomic information for 24,333 Holstein females born in Denmark, Finland, and Sweden. We used 2 data sets of bulls: the top 50 genotyped bulls and the top 25 polled genotyped bulls on the Nordic total merit scale. We used linear programming to optimize economic scores within each herd, considering genetic level, genetic relationship, semen cost, the economic impact of genetic defects, polledness, and ß-casein. We found that it was possible to reduce genetic relationships and eliminate expression of genetic defects with minimal effect on the genetic level in total merit index. Compared with maximizing only Nordic total merit index, the relative frequency of polled offspring increased from 13.5 to 22.5%, and that of offspring homozygous for ß-casein (A2A2) from 66.7 to 75.0% in one generation, without any substantial negative impact on other comparison criteria. Using only semen from polled bulls, which might become necessary if dehorning is banned, considerably reduced the genetic level. We also found that animals carrying the polled allele were less likely to be homozygous for ß-casein (A2A2) and more likely to be carriers of the genetic defect HH1. Hence, adding economic value to a monogenic trait in the economic score used for mating allocation sometimes negatively affected another monogenetic trait. We recommend that the comparison criteria used in this study be monitored in a modern genomic mating program.


Assuntos
Caseínas , Programação Linear , Feminino , Bovinos/genética , Animais , Masculino , Caseínas/genética , Reprodução , Genótipo , Genômica , Alelos
14.
Microbiome ; 11(1): 81, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081504

RESUMO

BACKGROUND: A large proportion of prokaryotic microbes in marine sediments remains uncultured, hindering our understanding of their ecological functions and metabolic features. Recent environmental metagenomic studies suggested that many of these uncultured microbes contribute to the degradation of organic matter, accompanied by acetogenesis, but the supporting experimental evidence is limited. RESULTS: Estuarine sediments were incubated with different types of organic matters under anaerobic conditions, and the increase of uncultured bacterial populations was monitored. We found that (1) lignin stimulated the increase of uncultured bacteria within the class Dehalococcoidia. Their ability to metabolize lignin was further supported by the presence of genes associated with a nearly complete degradation pathway of phenolic monomers in the Dehalococcoidia metagenome-assembled genomes (MAGs). (2) The addition of cellulose stimulated the increase of bacteria in the phylum Ca. Fermentibacterota and family Fibrobacterales, a high copy number of genes encoding extracellular endoglucanase or/and 1,4-beta-cellobiosidase for cellulose decomposition and multiple sugar transporters were present in their MAGs. (3) Uncultured lineages in the order Bacteroidales and the family Leptospiraceae were enriched by the addition of casein and oleic acid, respectively, a high copy number of genes encoding extracellular peptidases, and the complete ß-oxidation pathway were found in those MAGs of Bacteroidales and Leptospiraceae, respectively. (4) The growth of unclassified bacteria of the order Clostridiales was found after the addition of both casein and cellulose. Their MAGs contained multiple copies of genes for extracellular peptidases and endoglucanase. Additionally, 13C-labeled acetate was produced in the incubations when 13C-labeled dissolved inorganic carbon was provided. CONCLUSIONS: Our results provide new insights into the roles of microorganisms during organic carbon degradation in anaerobic estuarine sediments and suggest that these macro and single molecular organic carbons support the persistence and increase of uncultivated bacteria. Acetogenesis is an additional important microbial process alongside organic carbon degradation. Video Abstract.


Assuntos
Carbono , Celulase , Carbono/metabolismo , Lignina/metabolismo , Anaerobiose , Caseínas/genética , Caseínas/metabolismo , Celulase/genética , Celulase/metabolismo , Bactérias/genética , Bactérias/metabolismo , Peptídeo Hidrolases/genética , Sedimentos Geológicos/microbiologia , Filogenia
15.
Anim Biotechnol ; 34(9): 4878-4884, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37071545

RESUMO

This study aimed to determine the polymorphism in 7th exon of beta-casein gene (CSN2) gene in seven domestic (Kosali, Tharparkar, Gangatiri, Sahiwal, Gir, Khariar, Motu) and two exotic cattle breeds (Jersey and Holstein-Friesian). Genomic DNA was extracted from 1000 milk samples, and the C > A polymorphism in CSN2 was determined using the tetra-primer amplification refractory mutation system-polymerase chain reaction method. In all Indigenous cattle breeds, the mean frequency of A1A2 and A2A2 genotypes was 0.19 and 0.80, respectively. The A1A1 genotype was absent in all seven domestic cattle breeds. The frequency of the A2A2 genotype was highest in the Gir breed (0.93). However, the Sahiwal, Tharparkar, and Motu breeds also had a higher frequency of A2A2 genotype compared to other breeds. In contrast, Gangatiri breed of India showed lowest frequency of A2A2 genotype. The mean A1 and A2 allele frequency was 0.09 and 0.91, respectively. In exotic breeds, the mean frequencies of the A1A1, A1A2, and A2A2 genotypes were 0.42, 0.55, and 0.03, respectively. Similarly, the mean A1 and A2 allele frequency was 0.69 and 0.31, respectively. This study suggests the high potential of Gir, Sahiwal, Tharparkar, and Motu cattle for A2 milk production since they carry a favorable A2 genotype.


Assuntos
Caseínas , Leite , Bovinos/genética , Animais , Caseínas/genética , Polimorfismo Genético , Frequência do Gene , Genótipo
16.
J Anim Physiol Anim Nutr (Berl) ; 107(6): 1320-1327, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36961053

RESUMO

This study investigated the role of the mammalian target of rapamycin complex 2 (mTORC2)-protein kinase B (AKT) signalling in methionine (Met)-induced L-type amino acid transporter 1 (LAT1) expression and milk protein production. Primary mammary epithelial cells (MECs) from mammary parenchymal tissues of three lactating cows and MAC-T bovine MECs were cultured with or without 0.6 mM Met. Rapamycin-insensitive companion of mTOR (RICTOR) siRNA, the mTORC1 inhibitor rapamycin and the AKT activator SC79 were used to evaluate the effects of mTORC2-AKT signalling on Met-induced LAT1 expression and function. Each experiment was performed three times. Data were analysed with a two-sided unpaired t test or ANOVA with the Bonferroni multiple-comparison test. Western blotting showed that Met stimulation increased RICTOR expression (~244.67%; p < 0.05; control, 0.15 ± 0.026; Met, 0.517 ± 0.109) and AKT-S473 levels (~281.42%; p < 0.01; control, 0.253 ± 0.067; Met, 0.965 ± 0.019) in both primary MECs and MAC-T cells. Rapamycin-induced mTORC1 signalling inhibition decreased only Met-induced ß-CASEIN expression by ~21.24% (p < 0.01; Met, 0.777 ± 0.01; Met and rapamycin, 0.612 ± 0.04) and did not affect Met-stimulated AKT-S473 levels, suggesting that mTORC2-AKT activation upon Met stimulation also contributes to milk protein synthesis. LAT1 participates in Met-induced ß-CASEIN expression. In dairy cow MECs, mTORC2 inhibition by RICTOR siRNA decreased LAT1 levels on the plasma membrane by ~45.13% (p < 0.01; control, 0.359 ± 0.006; siRICTOR, 0.197 ± 0.004). However, SC79-induced AKT activation had the opposite effect (p < 0.01). In primary MECs and MAC-T cells, Met stimulation increased cytosolic and plasma membrane LAT1 expression respectively (MECs, 113.98% and 58.43%; MAC-T, 165.85% and 396.39%; p < 0.05). However, RICTOR siRNA significantly reduced Met-induced plasma membrane LAT1 expression (~76.48%; Met, 0.539 ± 0.05; Met and siRICTOR, 0.127 ± 0.012; p < 0.05). Thus, Met increased LAT1 expression and function via mTORC2-AKT signalling, upregulating milk protein synthesis in dairy cow MECs.


Assuntos
Caseínas , Proteínas Proto-Oncogênicas c-akt , Feminino , Bovinos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Caseínas/genética , Caseínas/metabolismo , Metionina/farmacologia , Metionina/metabolismo , Lactação , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas do Leite/genética , Proteínas do Leite/metabolismo , Racemetionina/metabolismo , Fatores de Transcrição/metabolismo , RNA Interferente Pequeno/metabolismo , Células Epiteliais/metabolismo , Sirolimo , Mamíferos/metabolismo
17.
Genes (Basel) ; 14(2)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36833182

RESUMO

Camel milk is known for its exceptional medical uses. It has been used since ancient times to treat infant diarrhea, hepatitis, insulin-dependent diabetes (IDDM), lactose intolerance, alcohol-induced liver damage, allergies, and autism. It has the power to treat several diseases, with cancer being the most significant. This study investigated the evolutionary relationship, physiochemical characteristics, and comparative genomic analysis of the casein gene family (CSN1S1, CSN2, CSN1S2, and CSN3) in Camelus ferus. Molecular phylogenetics showing the camelid species clustered casein nucleotide sequences into four groups: CSN1S1, CSN2, CSN1S2, and CSN3. The casein proteins from camels were evaluated and found to be unstable, thermostable, and hydrophilic. CSN1S2, CSN2, and CSN3 were acidic, but CSN1S1 was basic. CSN1S1 showed positive selection for one amino acid (Q), CSN1S2 and CSN2 for three (T, K, Q), and CSN3 showed no positive selection. We also compared high-milk-output species such as cattle (Bos Tarus) and low-milk-yield species such as sheep (Ovies Aries) with camels (Camel ferus) and discovered that YY1 sites are more frequent in sheep than in camels and very low in cattle. We concluded that the ratio of YY1 sites in these species may affect milk production.


Assuntos
Camelus , Caseínas , Bovinos , Animais , Ovinos/genética , Caseínas/genética , Camelus/genética , Filogenia , Leite/metabolismo , Sequência de Bases , Alérgenos
18.
Trop Anim Health Prod ; 55(2): 94, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36809577

RESUMO

The aim of this study was to find out the genetic polymorphism in ß-casein gene CSN2 in Azi-Kheli buffaloes found in district Swat. Blood samples from 250 buffaloes were collected and processed in lab for sequencing to see the genetic polymorphism in CSN2 gene on 67 position of exon7. The ß-casein is a milk second abundant protein having some variants, wherein A1 and A2 are the most common. After performing sequence analysis, it was found that Azi-Kheli buffaloes were homozygous for only A2 type variant. The amino acid change (proline to histadine) on 67 position of exon 7 was not found; however, three other novel SNPs at loci g.20545A > G, g.20570G > A, and g.20693C > A were identified in the study. Amino acid change due to SNPs were found as SNP1, valine > proline; SNP2, leucin > phenylalanine; and SNP3, threonine > valine. Allelic and genotypic frequencies' analysis exhibited that all three SNPs were following the Hardy-Weinberg equilibrium (HWE: P < 0.05). All the three SNPs showed medium PIC value and gene heterozygosity. The SNPs located on different position of exon 7 of CSN2 gene exhibited associations with some of the performance traits and milk composition. Higher daily milk yield of 9.86 ± 0.43 L and the peak milk yield of 13.80 ± 0.60 L were found in response to SNP3 followed by SNP2 and SNP1. The percentage of milk fat and protein was found significantly higher (P ≤ 0.05) in relation to SNP3 followed by SNP2 and SNP1 given as 7.88 ± 0.41, 7.48 ± 0.33, and 7.15 ± 0.48 for fat% and 4.00 ± 0.15, 3.73 ± 0.10 and 3.40 ± 0.10 for protein%. It was concluded that Azi-Kheli buffalo milk contains A2 genetic variant along with other useful novel variants indicating quality milk for human health. Genotypes of SNP3 should be given preference in selection both in indices and nucleotide polymorphism.


Assuntos
Búfalos , Caseínas , Leite , Animais , Aminoácidos/metabolismo , Búfalos/genética , Caseínas/genética , Genótipo , Leite/metabolismo , Polimorfismo de Nucleotídeo Único
19.
Acta Biochim Pol ; 70(1): 205-209, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36773313

RESUMO

This study was aimed at conducting a comparative analysis of the efficiency in genotyping cattle by beta-casein locus using the allele-specific PCR methods. The results of the study have demonstrated the necessity to optimize the protocol for the use of AS-PCR to detect alleles A1 and A2. It was found that the use of non-optimized PCR protocols led to the genotyping errors, manifested regarding beta-casein locus (CSN2). The impossibility of using the touchdown PCR as an optimization instrument for AS-PCR was proven. The elaborated typing protocols were used to study the genetic structure of the cattle populations of different breeds, reared in Ukraine - Ukrainian Red-and-White dairy, Ukrainian Black-and-White dairy (two populations), and Charolais. It was found that locus CSN2 was polymorphic in all the cattle populations. The frequencies of allele A2 varied within 0.34-0.91 depending on the population of the animals, which may be conditioned by the specificities in the selection work. No deviation from the Hardy-Weinberg equilibrium was found in any investigated population of cattle.


Assuntos
Caseínas , Bovinos/genética , Animais , Alelos , Caseínas/genética , Reação em Cadeia da Polimerase/métodos , Genótipo
20.
Anim Biotechnol ; 34(4): 1462-1473, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35235484

RESUMO

Genetic variants of bovine Beta-casein protein (CSN2) gene especially A1 and A2 are the most important variants in dairy cattle. A1 milk protein is considered as risk factor for different disease and milk intolerance which release Beta-Casomorphin-7 during digestion which is a bioactive opioid but not released from A2 milk protein. This opioid is responsible for several human health problems like Coronary Heart disease, type 1 diabetics, milk intolerance and other neurological disorders. In present study, 360 blood sample were collected from Lohani, Achai, jersey, Holstein Friesian, Achai x jersey, Friesian x Sahiwal and Sahiwal x Friesian from different region of Khyber Pakhtunkhwa (KP) province. The polymerase chain reaction (PCR) amplicons were sequenced for the identification of polymorphism in exon 7 of Beta-casein protein (CSN2) gene. Sequencing analysis explored CSN2 genotype in exon 7 using the Genomic sequence from GenBank (X.71104) g.8101 C > A at codon 67. The allelic and genotypic frequencies of CSN2 gene were analyzed and observed that Holstein Friesian cattle exhibited A1A2 33%, A1A1 50% and A2A2 17%, Jersey cattle show 68% A1A1, 18% A1A2 and 14% A2A2, Sahiwal x Friesian 56% A1A1, 26% A1A2 and 18% A2A2, Jersey × Achai 78% A2A2, 15% A1A2 and 7% A1A1, Achai 100% A2A2 Lohani 100% A2A2. This is a preliminary study, conducted with meager resources, therefore, it is very difficult to make conclusion that which particular breed possess harmful alleles and which breed possess useful alleles of beta-casein gene. Therefore, a comprehensive molecular work is needed to be performed with greater number of samples sequencing.


Assuntos
Analgésicos Opioides , Caseínas , Bovinos/genética , Animais , Humanos , Caseínas/genética , Caseínas/metabolismo , Paquistão , Genótipo , Proteínas do Leite/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...